Quantum Computing in Medicine: Revolutionizing Healthcare and Advancing Scientific Discovery
Maria Risvas , Quality Management, Regenerative Medicine Centre, Medical School, Aristotle University, 54124 Thessaloniki, Greece John Spanoudaki , Quality Management, Regenerative Medicine Centre, Medical School, Aristotle University, 54124 Thessaloniki, GreeceAbstract
Quantum computing has the potential to revolutionize healthcare by enabling faster and more accurate data processing, improving drug discovery, enhancing diagnostic methods, and advancing personalized medicine. This article explores the applications of quantum computing in the medical field, highlighting its role in drug discovery, genomics, medical imaging, and treatment optimization. Despite its promise, challenges remain in its implementation due to technical and ethical considerations. Nonetheless, the potential of quantum computing to transform healthcare is immense, paving the way for breakthroughs that can lead to more precise and efficient medical practices.
Keywords
Quantum computing, drug discovery, personalized medicine
References
Flöther, F.F.; Griffin, P.F. How can quantum technologies be applied in healthcare, medicine and the life sciences? Res. Dir. Quantum Technol. 2023, 1, e7. [Google Scholar] [CrossRef]
Ur Rasool, R.; Ahmad, H.F.; Rafique, W.; Qayyum, A.; Qadir, J.; Anwar, Z. Quantum computing for healthcare: A review. Future Internet 2023, 15, 94. [Google Scholar] [CrossRef]
Flöther, F.F. The state of quantum computing applications in health and medicine. Res. Dir. Quantum Technol. 2023, 1, e10. [Google Scholar] [CrossRef]
Wang, P.H.; Chen, J.H.; Yang, Y.Y.; Lee, C.; Tseng, Y.J. Recent advances in quantum computing for drug discovery and development. IEEE Nanotechnol. Mag. 2023, 17, 26–30. [Google Scholar] [CrossRef]
Sarkar, A.; Al-Ars, Z.; Bertels, K. Estimating algorithmic information using quantum computing for genomics applications. Appl. Sci. 2021, 11, 2696. [Google Scholar] [CrossRef]
Sharma, M.; Mahajan, Y.; Alzahrani, A. Personalized Medicine Through Quantum Computing: Tailoring Treatments in Healthcare. In Quantum Innovations at the Nexus of Biomedical Intelligence; IGI Global: Hershey, PA, USA, 2024; pp. 147–166. [Google Scholar]
Pakela, J.M.; Tseng, H.H.; Matuszak, M.M.; Ten Haken, R.K.; McShan, D.L.; El Naqa, I. Quantum-inspired algorithm for radiotherapy planning optimization. Med. Phys. 2020, 47, 5–18. [Google Scholar] [CrossRef]
Ceperley, D.; Alder, B. Quantum monte carlo. Science 1986, 231, 555–560. [Google Scholar] [CrossRef]
Doga, H.; Bose, A.; Sahin, M.E.; Bettencourt-Silva, J.; Pham, A.; Kim, E.; Andress, A.; Saxena, S.; Parida, L.; Robertus, J.L.; et al. How can quantum computing be applied in clinical trial design and optimization? Trends Pharmacol. Sci. 2024, 45, 880–891. [Google Scholar] [CrossRef]
Sharma, P. Quantum Computing in Drug Design: Enhancing Precision and Efficiency in Pharmaceutical Development. Sage Sci. Rev. Appl. Mach. Learn. 2024, 7, 1–9. [Google Scholar]
Niraula, D.; Jamaluddin, J.; Matuszak, M.M.; Haken, R.K.; Naqa, I.E. Quantum deep reinforcement learning for clinical decision support in oncology: Application to adaptive radiotherapy. Sci. Rep. 2021, 11, 23545. [Google Scholar] [CrossRef]
Enad, H.G.; Mohammed, M.A. A review on artificial intelligence and quantum machine learning for heart disease diagnosis: Current techniques, challenges and issues, recent developments, and future directions. Fusion Pract. Appl. (FPA) 2023, 11, 08–25. [Google Scholar] [CrossRef]
Jayanthi, P.; Rai, B.K.; Muralikrishna, I. The potential of quantum computing in healthcare. In Technology Road Mapping for Quantum Computing and Engineering; IGI Global: Hershey, PA, USA, 2022; pp. 81–101. [Google Scholar]
Cavinato, S.; Felser, T.; Fusella, M.; Paiusco, M.; Montangero, S. Optimizing radiotherapy plans for cancer treatment with Tensor Networks. Phys. Med. Biol. 2021, 66, 125015. [Google Scholar] [CrossRef] [PubMed]
Chow, J.C. A performance evaluation on Monte Carlo simulation for radiation dosimetry using cell processor. J. Comput. Methods Sci. Eng. 2011, 11, 1–12. [Google Scholar] [CrossRef]
Ekert, A.; Hayden, P.M.; Inamori, H. Basic concepts in quantum computation. In Coherent Atomic Matter Waves, 27 July–27 August 1999; Springer: Berlin/Heidelberg, Germany, 2001; pp. 661–701. [Google Scholar]
Feynman, R. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 1985, 400, 97–117. [Google Scholar]
Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: Piscataway, NJ, USA; pp. 124–134. [Google Scholar]
Shor, P.W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 1995, 52, R2493. [Google Scholar] [CrossRef]
Strubell, E. An Introduction to Quantum Algorithms; COS498 Chawathe; Springer: Berlin/Heidelberg, Germany, 2011; Volume 13, p. 19. [Google Scholar]
Ollitrault, P.J.; Miessen, A.; Tavernelli, I. Molecular quantum dynamics: A quantum computing perspective. Acc. Chem. Res. 2021, 54, 4229–4238. [Google Scholar] [CrossRef]
Courtland, R. Google aims for quantum computing supremacy [news]. IEEE Spectr. 2017, 54, 9–10. [Google Scholar] [CrossRef]
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Maria Risvas, John Spanoudaki

This work is licensed under a Creative Commons Attribution 4.0 International License.