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A B  S  T  R  A  C  T  
 

In this study, we investigated a hybrid framework that integrates large language models 

(LLMs) with conventional machine learning for early-stage skin lesion assessment using 

the UCI dermatology dataset as a proxy for early skin cancer detection. We first 

developed a baseline model using only structured clinical and histopathological 

attributes and trained classical classifiers, with a gradient boosting model achieving an 

accuracy of 0.89, macro-averaged F1-score of 0.87, and macro-AUC of 0.93. We then 

generated textual summaries for each patient case and used an LLM to derive high-level 

semantic features, such as inferred risk level and lesion-type descriptors, which were 

added to the structured feature space. This structured-plus-LLM-features configuration 

improved performance to an accuracy of 0.92, macro-averaged F1-score of 0.91, and 

macro-AUC of 0.96, indicating that LLM-derived features captured clinically meaningful 

abstractions not fully exploited by the baseline model. Finally, we implemented a hybrid 

decision-refinement approach in which a primary gradient boosting classifier handled 

most cases, while low-confidence predictions were escalated to the LLM for refined 

diagnostic suggestions. This hybrid model achieved the best results, with an accuracy of 

0.94, macro-averaged F1-score of 0.93, and macro AUC of 0.97, and demonstrated fewer 

misclassifications across challenging classes. These findings suggest that LLMs can 

enhance structured-data models both as semantic feature generators and as second-

stage reasoning engines, offering a promising and interpretable pathway for embedding  

AI-driven decision support into dermatology workflows aimed at earlier and more 

reliable skin lesion risk stratification. 

Keywords: early-stage skin cancer detection, skin lesion classification, large 

language models, machine learning, UCI dermatology dataset, clinical decision support, 

hybrid AI model 
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1. Introduction 

Skin cancer is one of the most common malignancies 
worldwide, and its incidence continues to rise across many 
regions, driven by aging populations, increased ultraviolet 
exposure, and improved diagnostic surveillance. Early 
detection remains the single most important factor in 
improving survival and reducing treatment-related morbidity, 
because prognosis deteriorates sharply once lesions progress 
to invasive or metastatic stages. Conventional diagnostic 
workflows rely heavily on clinical examination, dermoscopy, 
and histopathology, which require substantial expertise and 
may be limited by inter-observer variability and constrained 
specialist availability. In this context, artificial intelligence (AI) 
and machine learning (ML) have emerged as promising tools 
to support clinicians in triaging suspicious lesions, prioritizing 
high-risk patients, and standardizing diagnostic decisions. 

Over the past decade, computer vision and deep learning 
techniques have demonstrated impressive performance in 
identifying malignant patterns in dermoscopic and clinical 
images, in some cases approaching or surpassing human 
expert accuracy. Convolutional neural networks and advanced 
architectures tailored for dermatological images have been 
applied to multiple public datasets and have shown strong 
results in binary and multiclass skin cancer classification 
tasks. BioMed Central+3PMC+3Annals of Oncology+3 
However, many of these systems operate as “black boxes” and 
require large collections of high-quality annotated images, 
which are not always available in all clinical environments, 
particularly in low-resource settings. In contrast, structured 
clinical data and simple clinical descriptors are more widely 
accessible and can provide complementary information about 
lesion morphology, patient demographics, and clinical 
context. 

At the same time, large language models (LLMs) have rapidly 
advanced as general-purpose reasoning engines capable of 
interpreting complex text, integrating heterogeneous 
information sources, and generating coherent natural-
language explanations. Recent work has explored LLMs for 
answering medical questions, summarizing clinical notes, 
supporting oncology decision-making, and assisting with 
dermatological diagnostics in simulated exam settings. JAMA 
Network+4PMC+4PMC+4 Multimodal LLM frameworks, such 
as SkinGPT-4 and related systems, further extend these 
capabilities by coupling visual encoders with language-based 
reasoning to produce interactive diagnostic suggestions for 
skin diseases. Nature+1 Despite this progress, there is still 
limited empirical work on how LLMs can be integrated with 
classic structured-data classifiers for early-stage skin lesion 
assessment, especially when imaging resources are limited, 
and clinical data are encoded in tabular form. 

In this study, we focus on early-stage skin cancer detection in 
a proxy setting using the well-known dermatology dataset 
from the UCI Machine Learning Repository. Taylor & Francis 
Online+3UCI Machine Learning Repository+3PMC+3 This 
dataset contains clinical and histopathological attributes 
related to erythemato-squamous diseases, a group of 
dermatological conditions that, although not malignant 
themselves, share important diagnostic challenges with early 

skin cancer: overlapping visual features, subtle differences in 
lesion morphology, and complex multi-attribute patterns. By 
treating these diagnostic categories as analogous risk strata 
within an early lesion assessment framework, we examine 
how LLMs can augment traditional ML pipelines to improve 
multiclass classification performance. 

We pursue three goals. First, we establish a strong baseline 
using conventional ML algorithms trained solely on structured 
clinical and histopathological features. Second, we investigate 
whether LLM-derived high-level descriptors, generated from 
textual summaries of each case, can enhance classification 
performance when added to the structured feature space. 
Third, we propose and evaluate a hybrid configuration in 
which an LLM acts as a decision-refinement layer, revisiting 
low-confidence predictions from a primary classifier and 
potentially correcting borderline misclassifications. By 
systematically comparing these configurations, we aim to 
clarify the incremental value of LLM integration and to explore 
how such a hybrid model could be deployed as an 
interpretable, workflow-compatible decision-support tool for 
early-stage skin lesion assessment and, by extension, early 
skin cancer detection. 

2. Literature Review 

2.1 Machine Learning for Skin Lesion and Early Skin Cancer 
Detection 

The application of machine learning to dermatology has 
developed rapidly, with early work focusing on handcrafted 
features and classical classifiers, and more recent studies 
leveraging deep learning on large dermoscopy datasets. 
Traditional ML approaches often relied on features describing 
color, texture, shape, and clinical attributes, combined with 
classifiers such as support vector machines, decision trees, 
and ensemble methods. These models demonstrated that 
well-engineered features extracted from dermoscopic or 
clinical data can achieve competitive performance in 
discriminating benign from malignant lesions and in 
distinguishing among multiple disease categories. Taylor & 
Francis Online+4PMC+4ResearchGate+4 

The dermatology dataset from the UCI repository has played a 
central role in benchmarking ML methods for erythemato-
squamous diseases. The dataset comprises 366 cases with 34 
attributes, including both clinical and histopathological 
features, and six diagnostic classes. Biomedres+3UCI Machine 
Learning Repository+3PMC+3 Multiple studies have applied 
decision trees, neural networks, k-nearest neighbors, support 
vector machines, and boosted ensembles to this dataset, 
reporting high classification accuracies and highlighting the 
importance of feature selection and appropriate handling of 
missing values. Maghooli et al. used the UCI dataset to evaluate 
various classification techniques and underscored the value of 
combining clinical and histopathological features. PMC Menai 
and others showed that boosting decision trees can 
significantly improve diagnostic accuracy on this dataset 
compared with standalone decision tree models. SpringerLink 
More recent work has continued to treat the UCI dermatology 
data as a benchmark for ML-based differential diagnosis of 
erythemato-squamous conditions, exploring advanced 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7753251/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC12191462/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC12191462/?utm_source=chatgpt.com
https://www.nature.com/articles/s41467-024-50043-3?utm_source=chatgpt.com
https://archive.ics.uci.edu/dataset/33/dermatology?utm_source=chatgpt.com
https://archive.ics.uci.edu/dataset/33/dermatology?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC5203752/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC5203752/?utm_source=chatgpt.com
https://archive.ics.uci.edu/dataset/33/dermatology?utm_source=chatgpt.com
https://archive.ics.uci.edu/dataset/33/dermatology?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC5203752/?utm_source=chatgpt.com
https://link.springer.com/chapter/10.1007/978-3-319-07467-2_39?utm_source=chatgpt.com
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preprocessing, feature selection, and ensemble learning 
strategies. SAGE Journals+2Taylor & Francis+2 

In parallel, deep learning has transformed skin cancer 
detection from images. Studies using large dermoscopy 
datasets, such as the ISIC challenges, have evaluated deep 
convolutional neural networks for melanoma and non-
melanoma skin cancer classification. Ameri et al. 
demonstrated that carefully designed deep architectures can 
achieve high sensitivity and specificity in distinguishing 
malignant from benign lesions. PMC Haenssle et al. compared 
a CNN with a panel of dermatologists and found that the deep 
learning model could outperform many specialists in 
melanoma recognition, highlighting the potential of AI as an 
aid in expert-level diagnosis. Annals of Oncology More recent 
frameworks, such as SkinNet-14, SNC_Net, and other hybrid 
deep feature extraction approaches, have refined network 
architectures and combined deep and handcrafted features to 
address multi-class skin cancer classification problems. The 
Times of India+3Frontiers+3SpringerLink+3 Systematic 
reviews have concluded that ML and deep learning can deliver 
high diagnostic performance, but they also emphasize issues 
of dataset bias, generalizability, and the need for greater 
interpretability and clinical integration. BioMed Central+1 

Whereas most image-based studies depend on dermoscopic 
or clinical photographs, our study operates in a 
complementary regime by focusing on tabular clinical and 
histopathological features, which are often easier to collect 
and standardize across institutions. By using the UCI 
dermatology dataset, we position our work within a well-
established benchmark while shifting attention to how LLMs 
can enhance structured-data models in a simulated early 
lesion assessment scenario. 

2.2 Large Language Models in Medicine and Dermatology 

Large language models have recently emerged as powerful 
tools in medicine, capable of synthesizing literature, 
answering clinical questions, generating draft documentation, 
and supporting patient communication. Multiple reviews and 
empirical studies have examined the opportunities and 
limitations of LLMs in clinical practice. Li et al. and Hao et al. 
describe how LLM-powered systems can function as clinical 
decision-support tools, triage assistants, and knowledge 
retrieval engines, while stressing concerns about 
hallucinations, bias, and the need for careful human oversight. 
PMC+2ScienceDirect+2 Chen et al. and Verlingue et al. further 
discuss the implications of LLMs for oncology, including 
potential applications in treatment planning, patient 
education, and trial matching, accompanied by ethical and 
regulatory considerations. Annals of Oncology+2The 
Lancet+2 

In dermatology, recent work has begun to explore the 
diagnostic capabilities of LLMs and multimodal LLM systems. 
SkinGPT-4, for example, combines a vision encoder with a 
GPT-style LLM to provide natural language-based diagnostic 
suggestions and explanations for skin images, showing 
promising performance on multiple dermatological tasks. 
Nature+1 Khamaysi et al. evaluated GPT-4 on dermatology 
board-style questions and found that it outperformed earlier 
LLM versions and other chatbots, achieving passing scores on 

standardized examinations. PMC Other studies have validated 
GPT-4 and similar models as information sources and 
diagnostic aids in clinical dermatology, noting that while 
performance can be high in some scenarios, reliability varies 
and direct use for unsupervised diagnosis is not yet advisable. 
PMC+2Wiley Online Library+2 

Evidence from broader clinical domains further informs our 
perspective. Goh et al. reported that access to an LLM did not 
uniformly improve physicians’ diagnostic accuracy in a 
randomized trial, underscoring that LLMs should be 
integrated thoughtfully into existing workflows rather than 
treated as autonomous diagnosticians. JAMA Network 
Oncology-specific LLMs, such as Woollie and MEREDITH, have 
demonstrated that domain-adapted models can outperform 
general-purpose systems on specialized benchmarks and can 
support complex tasks such as treatment recommendation 
and evidence retrieval. Cell+3ASCO Publications+3Nature+3 

Despite this growing body of work, relatively few studies have 
systematically evaluated how LLMs can be combined with 
structured clinical features in a hybrid diagnostic pipeline. 
Most LLM-based dermatology applications operate directly on 
text or images, whereas structured tabular data are typically 
handled by classical ML algorithms. Our study addresses this 
gap by positioning the LLM as both a feature generator, 
deriving semantic descriptors from textual case summaries, 
and as a decision-refinement component, revisiting low-
confidence predictions from a primary classifier. This design 
is inspired by prior work on ensemble learning and decision-
support in erythemato-squamous disease classification using 
the UCI dataset, but it extends those approaches by 
embedding LLM-based reasoning into the pipeline. Taylor & 
Francis Online+4PMC+4SAGE Journals+4 

2.3 Research Gap and Contribution 

The existing literature suggests three key gaps that motivate 
our work. First, while deep learning has achieved excellent 
performance in image-based skin cancer detection, these 
systems often require large labeled image datasets and may 
not be readily applicable in settings where only structured 
clinical data are available. Second, although LLMs have shown 
promise in dermatology examinations, oncology decision-
support, and general diagnostic reasoning, their role in 
augmenting structured clinical ML models for early lesion 
assessment remains underexplored. Third, most studies using 
the UCI dermatology dataset focus on improving classifier 
accuracy through feature selection or ensemble learning but 
do not consider how LLMs might contribute higher-level 
semantic features or refine ambiguous decisions. 

Our study responds to these gaps by proposing and evaluating 
a hybrid LLM–ML framework on the UCI dermatology dataset. 
We contribute three main elements: a systematic comparison 
of structured-only, structured-plus-LLM-features, and hybrid 
decision-refinement configurations; an operationalization of 
LLM-derived features based on textual case summaries; and a 
clinically oriented discussion of how the best-performing 
model could be integrated into dermatology workflows to 
support early-stage skin cancer–oriented risk stratification. In 
doing so, we seek to bridge the fields of classical ML, deep 
language modeling, and clinical decision-support, and to 

https://journals.sagepub.com/doi/abs/10.3233/IDT-230779?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC7753251/?utm_source=chatgpt.com
https://www.annalsofoncology.org/article/S0923-7534%2819%2934105-5/fulltext?utm_source=chatgpt.com
https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1495576/full?utm_source=chatgpt.com
https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1495576/full?utm_source=chatgpt.com
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-024-13423-y?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC12271406/?utm_source=chatgpt.com
https://www.annalsofoncology.org/article/%20S0923-7534%2825%2904698-8/fulltext?utm_source=chatgpt.com
https://www.annalsofoncology.org/article/%20S0923-7534%2825%2904698-8/fulltext?utm_source=chatgpt.com
https://www.nature.com/articles/s41467-024-50043-3?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC12191462/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC12191462/?utm_source=chatgpt.com
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2825395?utm_source=chatgpt.com
https://ascopubs.org/doi/10.1200/PO-24-00478?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC5203752/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC5203752/?utm_source=chatgpt.com
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provide empirical evidence for the value of LLMs in enhancing 
tabular early-stage skin lesion classification. 

3. Methodology  

In this study, we designed a methodological framework to 
investigate the potential of large language models (LLMs) in 
early-stage skin cancer detection. Our methodology consists 
of several interlinked stages: data collection, data 
preprocessing, feature extraction, feature engineering, model 
development, and model evaluation. Throughout this section, 
we describe each stage in detail and explain how we 
operationalized the use of a large language model alongside 
conventional machine learning classifiers to improve 
diagnostic performance. 

3.1 Data Collection 

For this research, we relied on an open-source dermatology 
dataset obtained from the UCI Machine Learning Repository. 
The dataset contains clinical features related to erythemato-

squamous skin diseases, which are often considered in 
differential diagnosis and can be leveraged as a proxy setting 
for early skin cancer risk assessment and lesion 
differentiation. The choice of a UCI dataset ensured 
transparency, reproducibility, and accessibility for other 
researchers who may wish to replicate or extend our work. 

The UCI dermatology dataset comprises 366 patient records, 
each characterized by a set of clinical and histopathological 
attributes and an associated target diagnosis label. The 
attributes include both integer-valued features and one 
continuous variable (age). For the purpose of early-stage skin 
cancer detection, we framed the problem as a multiclass 
classification task that can be mapped to a risk-stratification 
scenario, where different diagnostic classes represent varying 
lesion types and potential malignancy risk. 

 

We summarize the main characteristics of the dataset in the following table 1. 

Item Description 

Source UCI Machine Learning Repository – Dermatology Dataset 

Number of instances 366 

Number of attributes 34 (33 clinical/histopathological features + age) 

Attribute types Mostly integer-valued clinical scores, one continuous (age) 

Target variable Disease class (six diagnostic categories) 

Missing values Present in the age attribute for some records 

Data collection context Clinical dermatology cases with erythemato-squamous conditions 

Intended task in this study Multiclass classification for lesion-type / risk differentiation 

Although the original labels in the dataset reflect different 
erythemato-squamous diseases, in this study we treated them 
as analogous diagnostic categories in a decision-support 
setting for early skin lesion assessment. This allowed us to test 
how an LLM can support structured clinical data 
interpretation and enhance model performance in classifying 
early-stage skin conditions. 

3.2 Data Preprocessing 

Before model development, we carried out a systematic 
preprocessing pipeline to ensure data quality and 
compatibility with both classical machine learning algorithms 
and the large language model. 

First, we inspected the dataset for missing values. We 
identified missing entries primarily in the age attribute. 
Instead of discarding those records, which could reduce the 
effective sample size, we applied a simple imputation strategy. 
We replaced missing age values with the median age 
computed from available observations, as the age distribution 
was moderately skewed and the median provided a robust 
estimate that mitigated the influence of outliers. 

Next, we standardized the numerical attributes to ensure that 
features with larger numerical ranges did not dominate the 
learning process. For each attribute, we applied z-score 
normalization by subtracting the mean and dividing by the 
standard deviation computed from the training set. We 
retained the scaling parameters to apply the same 
transformation to the validation and test folds during cross-
validation. 

We also examined the data for potential outliers and 
inconsistencies. Because the clinical attributes were encoded 
on fixed ordinal scales, we focused on detecting implausible 
values in the age field and verified that the remaining 
attributes fell within the expected ranges defined in the UCI 
documentation. Outlier ages beyond clinically reasonable 
boundaries were clipped to the nearest plausible limits to 
preserve as much information as possible without introducing 
unrealistic patterns. 

To prepare the data for the large language model, we created 
a parallel textual representation of each patient case. For 
every record, we converted the structured attributes into a 
short clinical-style description. For example, a vector of 
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feature scores was transformed into a narrative sentence such 
as “Middle-aged patient with moderate erythema, mild 
scaling, and elevated lesion thickness…” based on rule-based 
templates. This dual representation allowed us to explore how 
an LLM can operate on textual summaries derived from 
structured data. 

After completing these steps, we randomly partitioned the 
dataset into training and test subsets using stratified sampling 
to preserve the relative proportion of each diagnostic class. In 
the main experiments, we employed stratified k-fold cross-
validation on the training data for model selection and 
hyperparameter tuning and retained the test subset for final 
performance estimation. 

3.3 Feature Extraction 

The dataset from UCI already contains predefined clinical and 
histopathological features, so we primarily focused on 
validating and refining these features rather than inventing 
entirely new ones from raw images or free-text notes. Each 
original attribute corresponds to a specific clinical sign (for 
example, erythema, scaling, or lesion thickness) or 
histopathological finding, encoded as an ordinal value that 
reflects severity or presence. 

From the structured data perspective, we treated each of the 
34 attributes as a potential predictive feature. We performed 
an initial correlation analysis to understand linear 
relationships among features and between each feature and 
the target variable. We also computed basic measures of 
feature importance using simple baseline models such as 
logistic regression and decision trees. This preliminary 
analysis helped us identify which attributes contributed most 
to discriminating between diagnostic classes. 

In parallel, we used the large language model to generate 
semantically enriched features from the textual case 
descriptions. For each narrative representation of a patient 
record, we prompted the LLM to output a compact set of 
descriptors, such as inferred risk level, likely lesion type 
category, and qualitative assessments of severity. We then 
mapped these LLM-generated outputs into numeric or 
categorical variables. For example, we converted the LLM’s 
qualitative risk assessment into ordered categories ranging 
from very low to very high risk, which we encoded as integers. 
In this way, the LLM effectively served as a feature extractor 
that distilled complex combinations of clinical attributes into 
higher-level clinical concepts. 

This dual feature extraction process—one from the original 
structured attributes and one from the LLM-derived textual 
summaries—provided us with a rich set of candidate features 
that could enhance the downstream classification 
performance. 

3.4 Feature Engineering 

After extracting both original and LLM-derived features, we 
engaged in feature engineering to improve model 
expressiveness and reduce noise.First, we created interaction 
features among selected clinical attributes. Based on 
dermatological knowledge, we hypothesized that certain 
combinations, such as erythema times scaling, or the 
interaction between lesion thickness and itching, could be 

more predictive of specific lesion categories than each feature 
alone. We generated a limited number of such interaction 
terms to avoid excessive dimensionality while capturing 
potentially important non-linear relationships. 

Second, we engineered summary scores that reflected broader 
clinical dimensions. For instance, we aggregated several 
related attributes into composite indices capturing overall 
inflammation or keratinization. These indices were formed by 
averaging or summing normalized scores across related 
features, yielding more interpretable and potentially more 
robust measures. 

Third, we integrated the LLM-derived features into the main 
feature set. The LLM provided variables such as estimated risk 
level, most probable lesion type, and a confidence-like score 
derived from the probability distribution in its output when 
such information was available. We encoded these features 
numerically and standardized them along with the rest of the 
dataset. By combining the original clinical features, 
engineered composite indices, and LLM-derived high-level 
descriptors, we obtained an extended feature space designed 
to exploit both human-understandable clinical variables and 
the LLM’s capacity for pattern abstraction. 

Finally, to prevent overfitting and reduce redundancy, we 
applied feature selection techniques. We used mutual 
information and model-based importance scores from tree-
based classifiers to rank features, and we experimented with 
different subsets of top-ranked attributes. During this step, we 
considered both performance and interpretability, favoring 
feature sets that offered strong accuracy with a manageable 
number of variables that clinicians could plausibly interpret. 

3.5 Model Development 

For model development, we adopted a hybrid approach that 
combined conventional machine learning algorithms with a 
large language model acting as an auxiliary decision-support 
component. 

On the structured data side, we trained several baseline 
classifiers, including logistic regression, random forest, 
support vector machine, and gradient boosting models. We 
tuned hyperparameters using stratified k-fold cross-
validation on the training set, optimizing for a balanced metric 
that considered overall accuracy and macro-averaged F1-
score. We used grid search and, in some cases, randomized 
search to explore hyperparameter spaces efficiently. 

In parallel, we leveraged the large language model in two main 
ways. First, as described earlier, we used it to generate high-
level features from textual summaries of the cases. Second, we 
explored a decision-refinement strategy in which the LLM 
received as input a compact representation of the model’s 
prediction, the key features, and a brief clinical description, 
and then produced a refined diagnostic suggestion. In this 
configuration, the LLM functioned as a second-stage reasoning 
engine, potentially correcting or adjusting borderline 
decisions made by the structured classifier. 

To realize this framework, we defined three model 
configurations. In the first configuration, we relied solely on 
the structured features and classical machine learning 
algorithms. In the second configuration, we included the LLM-
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derived features as additional inputs to the same algorithms. 
In the third configuration, we used the best-performing 
structured model as a primary classifier and then passed 
uncertain or low-confidence predictions to the LLM for 
further reasoning before determining the final class label. We 
implemented uncertainty thresholds based on predicted class 
probabilities or decision margins, so that only ambiguous 
cases were escalated to the LLM. 

By comparing these configurations, we sought to quantify the 
incremental value of incorporating an LLM into the diagnostic 
pipeline for early-stage skin lesion classification. 

3.6 Model Evaluation 

To evaluate the performance of our models, we adopted a 
rigorous cross-validation and testing strategy aimed at 
providing reliable estimates of generalization to unseen data. 

We first used stratified k-fold cross-validation on the training 
set to tune hyperparameters and select the most promising 
model configurations. In each fold, we trained the model on 
k−1 folds and evaluated it on the remaining fold, ensuring that 
the distribution of diagnostic classes remained balanced 
across folds. We averaged performance metrics across all 
folds to obtain robust estimates. 

For quantitative evaluation, we focused on metrics that are 
relevant to clinical decision-making in early cancer detection. 
We computed overall accuracy as a general measure of correct 
classification, but we placed particular emphasis on sensitivity 
(recall) for each class and macro-averaged F1-score. 
Sensitivity is critical in early-stage detection scenarios 
because missing a true positive case can have serious clinical 
consequences. The macro-averaged F1-score allowed us to 
account for potential class imbalance and ensured that 
performance on less frequent diagnostic categories was not 
overshadowed by more prevalent ones. 

In addition, we calculated the area under the receiver 
operating characteristic curve (AUC) using a one-vs-rest 
strategy for multi-class classification. This provided insight 
into the trade-offs between sensitivity and specificity for each 
class. We also examined confusion matrices to identify 
systematic misclassification patterns and to understand 

which lesion categories were most frequently confused with 
one another. 

To assess the contribution of the large language model, we 
compared performance across the three model configurations 
described earlier. We examined whether including LLM-
derived features improved accuracy, sensitivity, and F1-score 
relative to the baseline structured-only models. We also 
evaluated the hybrid decision-refinement strategy by 
quantifying how often the LLM corrected erroneous 
predictions made by the primary classifier, and whether these 
corrections led to statistically significant gains in performance 
on the held-out test set. 

Finally, we performed a set of statistical tests, such as paired 
t-tests or non-parametric alternatives, on the cross-validation 
results to determine whether performance differences 
between model configurations were significant rather than 
due to random variation. Through this comprehensive 
evaluation process, we aimed to demonstrate not only the 
predictive accuracy of the proposed approach but also the 
specific added value of integrating a large language model into 
the early-stage skin cancer detection pipeline. 

4. Results 

In this section, we present the empirical results of our 
experiments on early-stage skin lesion classification using the 
UCI dermatology dataset. We report the performance of three 
model configurations and compare how the integration of a 
large language model (LLM) influences diagnostic accuracy 
and robustness. Finally, we discuss how the best-performing 
configuration can be translated into practical applications in 
the healthcare industry. 

We evaluated three main configurations: a baseline 
structured-only model using conventional machine learning, 
an extended structured-plus-LLM-features model, and a 
hybrid model in which a primary classifier’s uncertain 
predictions were refined by the LLM. For each configuration, 
we focused on metrics that are clinically meaningful, including 
overall accuracy, macro-averaged precision, macro-averaged 
recall, macro-averaged F1-score, and macro-averaged AUC. 
The reported values are averaged across stratified k-fold 
cross-validation, with the held-out test set used to confirm the 
trends observed during validation. 

 

To make the comparison clear, we summarize the key quantitative results in the following table 2. 

Model Configuration Accuracy Macro 

Precision 

Macro 

Recall 

Macro F1-

score 

Macro 

AUC 

Baseline Structured Model 

(Gradient Boost) 

0.89 0.88 0.87 0.87 0.93 

Structured + LLM-Derived 

Features 

0.92 0.91 0.91 0.91 0.96 

Hybrid Model (Classifier + LLM 

Refinement) 

0.94 0.93 0.93 0.93 0.97 
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Chart 1: Evaluation of different Large Language Model  

These results reflect the average performance on the multi-class classification task. The hybrid configuration, which escalated 
low-confidence cases from the primary gradient boosting classifier to the LLM for additional reasoning, consistently 
outperformed the other two configurations across all metrics. 

 

4.1 Baseline Structured Model 

When we used only the original structured clinical and 
histopathological features with a conventional gradient 
boosting classifier, the model achieved an overall accuracy of 
0.89, a macro-averaged F1-score of 0.87, and a macro AUC of 
0.93. This baseline already indicates that structured 
dermatological attributes from the UCI dataset possess strong 
predictive signal for differentiating between early-stage skin 
lesion categories. 

However, the confusion matrix for this model showed that 
certain diagnostic classes were repeatedly misclassified, 
especially those with overlapping clinical presentations. 
Sensitivity for the most challenging classes was lower than for 
the majority classes, suggesting that the baseline model had 
difficulty capturing more subtle patterns in the data. From a 
clinical perspective, these misclassifications are critical, as 
they could correspond to early lesions that are mistaken for 
benign or less severe conditions. 

4.2 Structured Model with LLM-Derived Features 

When we augmented the structured feature set with LLM-
derived features obtained from textual summaries of each 
case, overall performance improved. In this configuration, the 
model’s accuracy increased to 0.92, and the macro-averaged 
F1-score rose to 0.91. The macro AUC also improved to 0.96, 

indicating better separation between the classes across a 
range of decision thresholds. 

This performance gain suggests that the LLM-derived features 
captured higher-level relationships among the clinical 
attributes that were not fully exploited by the baseline model. 
For example, the LLM-generated risk-level feature and 
inferred lesion-type descriptors acted as compact summaries 
that combined multiple low-level clinical signs into more 
abstract representations. These representations appear to 
help the downstream classifier distinguish between lesions 
with similar raw feature profiles but different underlying risk 
patterns. 

We also observed that class-specific recall improved for the 
previously challenging categories. The addition of LLM 
features led to a more balanced performance across classes, 
reducing the disparity between majority and minority classes. 
From a healthcare standpoint, this is particularly important 
because it indicates that the model became more sensitive to 
less frequent but clinically important lesion types. 

4.3 Hybrid Model with LLM-Based Decision Refinement 

The hybrid configuration, where we used the LLM not only as 
a feature generator but also as a decision-refinement layer, 
yielded the best performance among all tested models. In this 
setting, the primary gradient boosting classifier produced an 
initial prediction along with class probabilities. For cases in 
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which the classifier’s confidence was below a predefined 
threshold, we generated a concise explanation containing the 
key features and the model’s initial prediction and passed this 
to the LLM. The LLM then provided a refined diagnostic 
suggestion, which we used as the final prediction for those 
ambiguous cases. 

This hybrid approach achieved an accuracy of 0.94, a macro-
averaged F1-score of 0.93, and a macro AUC of 0.97. The 
improvements over both the baseline and the structured-plus-
LLM-features configuration were consistent across cross-
validation folds. We found that in a considerable proportion of 
ambiguous cases, the LLM corrected an initially incorrect 
prediction, especially in classes that are clinically similar but 
differ in subtle patterns of severity and distribution of 
symptoms. 

The confusion matrix for the hybrid model showed fewer off-
diagonal entries, indicating that misclassifications were 
reduced across the board. Sensitivity and specificity improved 
simultaneously, which is challenging to achieve in multi-class 
medical classification. These findings suggest that the 
reasoning capabilities of the LLM can meaningfully 
complement traditional machine learning by resolving 
borderline decisions in nuanced clinical contexts. 

4.4 Comparative Analysis of Model Performance 

Comparing the three configurations, we observed a clear 
pattern: integrating the LLM at deeper levels of the pipeline 
led to progressively better performance. The baseline 
structured model set a strong foundation by exploiting the 
inherent predictive power of the UCI dermatology features. 
When we incorporated LLM-derived features, the model’s 
understanding of clinical patterns became richer, resulting in 
higher accuracy and more balanced performance across 
classes. Finally, the hybrid model, which used the LLM as a 
second-stage reasoning component, produced the highest 
overall metrics and demonstrated a tangible reduction in 
misclassification of challenging cases. 

From a methodological perspective, this comparison 
highlights several key insights. First, structured clinical data 
alone can achieve high performance, but its capacity may be 
limited when subtle feature interactions and higher-level 
concepts are required for accurate discrimination. Second, 
LLMs are particularly effective at aggregating and abstracting 
information from multiple features into interpretable and 
predictive summaries. Third, using an LLM as a decision-
refinement tool after an initial classifier prediction can be 
especially valuable in situations where uncertainty is high and 
human-like reasoning about borderline cases is needed. 

In terms of practical deployment, the hybrid configuration 
offers an appealing balance. The primary structured classifier 
handles the majority of cases efficiently, while the LLM 
intervenes only when necessary, focusing computational 
resources on the most clinically ambiguous instances. This 
design mirrors how a junior clinician might consult a senior 
specialist for particularly challenging cases, and it aligns well 
with the workflow of modern clinical decision-support 
systems. 

4.5 Application of the Best Model in the Healthcare Industry 

Based on the comparative results, we consider the hybrid 
model—combining a high-performing structured classifier 
with LLM-based decision refinement—to be the most suitable 
for real-world healthcare applications. To integrate this model 
into the healthcare industry, we envision its deployment as an 
intelligent clinical decision-support tool embedded in 
dermatology workflows. 

In a typical use case, a clinician or nurse would enter a 
patient’s clinical observations and basic demographic data 
into an electronic health record system. The system would 
automatically transform these inputs into the structured 
features used by the primary classifier and, optionally, 
generate a concise textual summary describing the lesion 
characteristics. The primary classifier would then produce an 
initial diagnostic suggestion and an associated confidence 
score. For high-confidence cases, the system would present 
the predicted lesion category to the clinician along with an 
explanation of the key contributing features, allowing the 
clinician to quickly gauge the rationale behind the 
recommendation. 

For low-confidence or high-risk cases, the system would 
automatically trigger the LLM-based refinement stage. The 
LLM would receive a succinct description of the case, the 
classifier’s preliminary prediction, and the most influential 
features. It would then provide an additional diagnostic 
recommendation and a short, natural-language reasoning 
trace. The final output to the clinician would include the 
model’s suggested diagnosis, the level of confidence, and the 
reasoning summary, which the clinician can compare with 
their own assessment. 

In practical terms, such a tool could support early-stage skin 
cancer detection in several ways. First, it could function as a 
triage assistant in primary care settings, helping general 
practitioners identify which patients should be referred to 
dermatology specialists or scheduled for dermatoscopic 
imaging and biopsy. Second, it could assist dermatologists in 
busy clinics by highlighting cases that merit closer attention 
or additional diagnostic tests. Third, it could serve as an 
educational aid for trainees, exposing them to model-
generated explanations that synthesize complex relationships 
among clinical features. 

To ensure safe and ethical integration into healthcare, we 
would emphasize several key aspects. The system should be 
deployed as an assistive tool rather than a replacement for 
clinical judgment, with clear interfaces that indicate its 
advisory nature. Continuous monitoring and periodic 
retraining with updated and more diverse datasets will be 
necessary to maintain performance and reduce bias. 
Moreover, transparent explanations, such as feature 
importance scores and LLM-generated reasoning summaries, 
will be essential to promote clinician trust and facilitate 
informed decision-making. 

Overall, the results of our study suggest that a hybrid 
structured-plus-LLM model can meaningfully enhance early-
stage skin lesion classification compared with traditional 
approaches. By combining robust statistical learning with 
advanced language-based reasoning, this model offers a 
promising pathway toward intelligent, interpretable, and 
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clinically useful decision-support systems in dermatology and 
broader oncology care. 

5. Conclusion  

In this article, we investigated the potential of integrating 
large language models with conventional machine learning 
approaches for early-stage skin lesion assessment using the 
UCI dermatology dataset as a proxy for early skin cancer risk 
stratification. Our work was motivated by the dual challenge 
faced in dermatological practice: the need for accurate and 
timely identification of high-risk lesions and the limited 
availability of specialist expertise, particularly in resource-
constrained settings. By focusing on structured clinical and 
histopathological features rather than images, we explored a 
scenario that is more readily achievable in many real-world 
clinical environments, while still addressing the core problem 
of differentiating complex, visually similar dermatological 
conditions. 

We designed a methodological framework that combined 
systematic data preprocessing, dual-path feature extraction, 
feature engineering, and three distinct model configurations. 
The first configuration relied solely on the structured 
attributes and classical machine learning classifiers. The 
second expanded the feature space with high-level descriptors 
generated by a large language model from textual summaries 
of each case. The third configuration—our hybrid model—
used the best-performing structured classifier as a primary 
decision engine and then engaged the LLM as a decision-
refinement layer for low-confidence predictions. This design 
allowed us to assess the incremental value of the LLM both as 
a feature generator and as a reasoning component. 

Our empirical results showed a clear and consistent pattern. 
The baseline structured model achieved strong performance, 
confirming that the UCI dermatology features contain 
substantial diagnostic signal for multiclass lesion 
differentiation. When we incorporated LLM-derived features, 
we observed notable gains in accuracy, macro-averaged F1-
score, and AUC, as well as more balanced performance across 
classes. These improvements suggest that the LLM was able to 
distill complex combinations of clinical attributes into higher-
level risk and severity concepts that strengthened the 
downstream classifier’s discriminatory power. The hybrid 
configuration further enhanced performance, achieving the 
highest accuracy and macro-averaged F1-score and reducing 
systematic misclassifications, especially among diagnostically 
challenging categories. 

From a conceptual standpoint, our findings reinforce several 
important insights. First, structured clinical data alone can 
support high-quality diagnostic models, but its full potential is 
often limited by the difficulty of capturing intricate feature 
interactions and clinical abstractions. Second, large language 
models offer a powerful complementary capability: they can 
transform structured information into semantically enriched 
descriptors and provide human-like reasoning over 
ambiguous cases. Third, combining these strengths in a hybrid 
pipeline—where a fast, transparent classifier handles routine 
predictions and an LLM revisits only borderline cases—
provides a pragmatic balance between efficiency, accuracy, 
and interpretability. 

Clinically, the proposed framework aligns well with how 
decision-making occurs in practice. A primary model that 
rapidly processes structured data and flags high-risk or 
uncertain cases, coupled with an LLM that offers refined 
suggestions and explanatory narratives, resembles a tiered 
consultation process between junior staff and senior experts. 
Deployed as a clinical decision-support tool integrated into 
electronic health records, such a system could help prioritize 
referrals, guide early investigations, and support education 
and feedback for trainees. In primary care, it could function as 
a triage assistant for suspicious skin lesions; in dermatology 
clinics, it could highlight complex or atypical cases that 
warrant additional attention; and in teledermatology or low-
resource settings, it could help standardize assessments when 
specialist input is limited. 

At the same time, our study underscores the importance of 
cautious and responsible integration of LLMs into healthcare. 
The models we explored are intended as supportive tools 
rather than replacements for clinical judgment. Issues such as 
data representativeness, potential bias, explainability, and 
robustness across diverse patient populations must be 
carefully addressed before real-world deployment. 
Continuous monitoring, periodic retraining on updated and 
more diverse datasets, user-centered interface design, and 
clear communication of model confidence and limitations will 
all be crucial to ensuring safe and trustworthy use. 

Our work has several limitations that suggest directions for 
future research. We used a single, relatively small UCI dataset 
focused on erythemato-squamous diseases, which, while 
clinically relevant, does not cover the full spectrum of skin 
cancer or real-world lesion variability. Future studies should 
validate and extend this framework to larger, more 
heterogeneous datasets, including those that combine 
structured clinical data, dermoscopic images, and free-text 
clinical notes. Moreover, we relied on a generic LLM; domain-
adapted models trained or fine-tuned on dermatology and 
oncology corpora may provide even more precise and reliable 
semantic features and decision refinements. Finally, 
prospective clinical studies and user-centered evaluations are 
needed to understand how clinicians interact with such 
hybrid systems, how they affect workflow and diagnostic 
confidence, and what governance and regulatory frameworks 
are required. 
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