FRONTLINE JOURNALS

e S

/ RONTLINE H 22

: : : ) &2

/-\/ SOURNALS Frontline Medical Sciences and Pharmaceutical . e

Journal
ISSN: 2752-6712

o 2025
\

)
B Y

Hybrid Large Language Model-Machine Learning Framework for Early-
Stage Skin Lesion Classification Using the UCI Dermatology Dataset

Md. Rayhan Hassan Mahin
Department of Computer Science, Monroe University, New Rochelle, USA

Aleya Akhter
Master of Public Health Northern University Bangladesh, Dhaka, Bangladesh

Hosne Ara Malek
MBBS(USTC), DMU(DU), CCD(BIRDEM), University of Greifswald, Germany

Kamrun Naher
MBBS (USTC), DMU, RDMS, USA

Md Mahabubur Rahman Bhuiyan
Washington Dc. Department of Healthcare informatics, University of Potomac, USA

ARTICLE INfO ABSTRACT

Article history: In this study, we investigated a hybrid framework that integrates large language models
Submission Date: 06 November2025 . . . . . . .
Accepted Date: 27 November 2025 (LLMs) with conventional machine learning for early-stage skin lesion assessment using
Published Date: 01 December 2025 the UCI dermatology dataset as a proxy for early skin cancer detection. We first
VOLUME: Vol.05 Issue 12 . . L. . .
Page No. 01-10 developed a baseline model using only structured clinical and histopathological
thOp;j,,'doi.Org,10.37547,medica|_ attributes and trained classical classifiers, with a gradient boosting model achieving an

fmspj-05-12-01

improved performance to an accuracy of 0.92, macro-averaged F1-score of 0.91, and
macro-AUC of 0.96, indicating that LLM-derived features captured clinically meaningful
abstractions not fully exploited by the baseline model. Finally, we implemented a hybrid
decision-refinement approach in which a primary gradient boosting classifier handled
most cases, while low-confidence predictions were escalated to the LLM for refined
diagnostic suggestions. This hybrid model achieved the best results, with an accuracy of
0.94, macro-averaged F1-score of 0.93, and macro AUC of 0.97, and demonstrated fewer
misclassifications across challenging classes. These findings suggest that LLMs can
enhance structured-data models both as semantic feature generators and as second-
stage reasoning engines, offering a promising and interpretable pathway for embedding
Al-driven decision support into dermatology workflows aimed at earlier and more

reliable skin lesion risk stratification.
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accuracy of 0.89, macro-averaged F1l-score of 0.87, and macro-AUC of 0.93. We then
generated textual summaries for each patient case and used an LLM to derive high-level
semantic features, such as inferred risk level and lesion-type descriptors, which were
added to the structured feature space. This structured-plus-LLM-features configuration
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1. Introduction

Skin cancer is one of the most common malignancies
worldwide, and its incidence continues to rise across many
regions, driven by aging populations, increased ultraviolet
exposure, and improved diagnostic surveillance. Early
detection remains the single most important factor in
improving survival and reducing treatment-related morbidity,
because prognosis deteriorates sharply once lesions progress
to invasive or metastatic stages. Conventional diagnostic
workflows rely heavily on clinical examination, dermoscopy,
and histopathology, which require substantial expertise and
may be limited by inter-observer variability and constrained
specialist availability. In this context, artificial intelligence (AI)
and machine learning (ML) have emerged as promising tools
to support clinicians in triaging suspicious lesions, prioritizing
high-risk patients, and standardizing diagnostic decisions.

Over the past decade, computer vision and deep learning
techniques have demonstrated impressive performance in
identifying malignant patterns in dermoscopic and clinical
images, in some cases approaching or surpassing human
expertaccuracy. Convolutional neural networks and advanced
architectures tailored for dermatological images have been
applied to multiple public datasets and have shown strong
results in binary and multiclass skin cancer classification
tasks. BioMed Central+3PMC+3Annals of Oncology+3
However, many of these systems operate as “black boxes” and
require large collections of high-quality annotated images,
which are not always available in all clinical environments,
particularly in low-resource settings. In contrast, structured
clinical data and simple clinical descriptors are more widely
accessible and can provide complementary information about
lesion morphology, patient demographics, and clinical
context.

At the same time, large language models (LLMs) have rapidly
advanced as general-purpose reasoning engines capable of
interpreting complex text, integrating heterogeneous
information sources, and generating coherent natural-
language explanations. Recent work has explored LLMs for
answering medical questions, summarizing clinical notes,
supporting oncology decision-making, and assisting with
dermatological diagnostics in simulated exam settings. JAMA
Network+4PMC+4PMC+4 Multimodal LLM frameworks, such
as SkinGPT-4 and related systems, further extend these
capabilities by coupling visual encoders with language-based
reasoning to produce interactive diagnostic suggestions for
skin diseases. Nature+1 Despite this progress, there is still
limited empirical work on how LLMs can be integrated with
classic structured-data classifiers for early-stage skin lesion
assessment, especially when imaging resources are limited,
and clinical data are encoded in tabular form.

In this study, we focus on early-stage skin cancer detection in
a proxy setting using the well-known dermatology dataset
from the UCI Machine Learning Repository. Taylor & Francis
Online+3UCI Machine Learning Repository+3PMC+3 This
dataset contains clinical and histopathological attributes
related to erythemato-squamous diseases, a group of
dermatological conditions that, although not malignant
themselves, share important diagnostic challenges with early
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skin cancer: overlapping visual features, subtle differences in
lesion morphology, and complex multi-attribute patterns. By
treating these diagnostic categories as analogous risk strata
within an early lesion assessment framework, we examine
how LLMs can augment traditional ML pipelines to improve
multiclass classification performance.

We pursue three goals. First, we establish a strong baseline
using conventional ML algorithms trained solely on structured
clinical and histopathological features. Second, we investigate
whether LLM-derived high-level descriptors, generated from
textual summaries of each case, can enhance classification
performance when added to the structured feature space.
Third, we propose and evaluate a hybrid configuration in
which an LLM acts as a decision-refinement layer, revisiting
low-confidence predictions from a primary classifier and
potentially correcting borderline misclassifications. By
systematically comparing these configurations, we aim to
clarify the incremental value of LLM integration and to explore
how such a hybrid model could be deployed as an
interpretable, workflow-compatible decision-support tool for
early-stage skin lesion assessment and, by extension, early
skin cancer detection.

2. Literature Review

2.1 Machine Learning for Skin Lesion and Early Skin Cancer
Detection

The application of machine learning to dermatology has
developed rapidly, with early work focusing on handcrafted
features and classical classifiers, and more recent studies
leveraging deep learning on large dermoscopy datasets.
Traditional ML approaches often relied on features describing
color, texture, shape, and clinical attributes, combined with
classifiers such as support vector machines, decision trees,
and ensemble methods. These models demonstrated that
well-engineered features extracted from dermoscopic or
clinical data can achieve competitive performance in
discriminating benign from malignant lesions and in
distinguishing among multiple disease categories. Taylor &
Francis Online+4PMC+4ResearchGate+4

The dermatology dataset from the UCI repository has played a
central role in benchmarking ML methods for erythemato-
squamous diseases. The dataset comprises 366 cases with 34
attributes, including both clinical and histopathological
features, and six diagnostic classes. Biomedres+3UCI Machine
Learning Repository+3PMC+3 Multiple studies have applied
decision trees, neural networks, k-nearest neighbors, support
vector machines, and boosted ensembles to this dataset,
reporting high classification accuracies and highlighting the
importance of feature selection and appropriate handling of
missing values. Maghooli et al. used the UCI dataset to evaluate
various classification techniques and underscored the value of
combining clinical and histopathological features. PMC Menai
and others showed that boosting decision trees can
significantly improve diagnostic accuracy on this dataset
compared with standalone decision tree models. SpringerLink
More recent work has continued to treat the UCI dermatology
data as a benchmark for ML-based differential diagnosis of
erythemato-squamous conditions, exploring advanced
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preprocessing, feature selection, and ensemble learning
strategies. SAGE Journals+2Taylor & Francis+2

In parallel, deep learning has transformed skin cancer
detection from images. Studies using large dermoscopy
datasets, such as the ISIC challenges, have evaluated deep
convolutional neural networks for melanoma and non-
melanoma skin cancer classification. Ameri et al.
demonstrated that carefully designed deep architectures can
achieve high sensitivity and specificity in distinguishing
malignant from benign lesions. PMC Haenssle et al. compared
a CNN with a panel of dermatologists and found that the deep
learning model could outperform many specialists in
melanoma recognition, highlighting the potential of Al as an
aid in expert-level diagnosis. Annals of Oncology More recent
frameworks, such as SkinNet-14, SNC_Net, and other hybrid
deep feature extraction approaches, have refined network
architectures and combined deep and handcrafted features to
address multi-class skin cancer classification problems. The
Times of India+3Frontiers+3SpringerLink+3 Systematic
reviews have concluded that ML and deep learning can deliver
high diagnostic performance, but they also emphasize issues
of dataset bias, generalizability, and the need for greater
interpretability and clinical integration. BioMed Central+1

Whereas most image-based studies depend on dermoscopic
or clinical photographs, our study operates in a
complementary regime by focusing on tabular clinical and
histopathological features, which are often easier to collect
and standardize across institutions. By using the UCI
dermatology dataset, we position our work within a well-
established benchmark while shifting attention to how LLMs
can enhance structured-data models in a simulated early
lesion assessment scenario.

2.2 Large Language Models in Medicine and Dermatology

Large language models have recently emerged as powerful
tools in medicine, capable of synthesizing literature,
answering clinical questions, generating draft documentation,
and supporting patient communication. Multiple reviews and
empirical studies have examined the opportunities and
limitations of LLMs in clinical practice. Li et al. and Hao et al.
describe how LLM-powered systems can function as clinical
decision-support tools, triage assistants, and knowledge
retrieval engines, while stressing concerns about
hallucinations, bias, and the need for careful human oversight.
PMC+2ScienceDirect+2 Chen et al. and Verlingue et al. further
discuss the implications of LLMs for oncology, including
potential applications in treatment planning, patient
education, and trial matching, accompanied by ethical and
regulatory considerations. Annals of Oncology+2The
Lancet+2

In dermatology, recent work has begun to explore the
diagnostic capabilities of LLMs and multimodal LLM systems.
SkinGPT-4, for example, combines a vision encoder with a
GPT-style LLM to provide natural language-based diagnostic
suggestions and explanations for skin images, showing
promising performance on multiple dermatological tasks.
Nature+1 Khamaysi et al. evaluated GPT-4 on dermatology
board-style questions and found that it outperformed earlier
LLM versions and other chatbots, achieving passing scores on
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standardized examinations. PMC Other studies have validated
GPT-4 and similar models as information sources and
diagnostic aids in clinical dermatology, noting that while
performance can be high in some scenarios, reliability varies
and direct use for unsupervised diagnosis is not yet advisable.
PMC+2Wiley Online Library+2

Evidence from broader clinical domains further informs our
perspective. Goh et al. reported that access to an LLM did not
uniformly improve physicians’ diagnostic accuracy in a
randomized trial, underscoring that LLMs should be
integrated thoughtfully into existing workflows rather than
treated as autonomous diagnosticians. JAMA Network
Oncology-specific LLMs, such as Woollie and MEREDITH, have
demonstrated that domain-adapted models can outperform
general-purpose systems on specialized benchmarks and can
support complex tasks such as treatment recommendation
and evidence retrieval. Cell+3ASCO Publications+3Nature+3

Despite this growing body of work, relatively few studies have
systematically evaluated how LLMs can be combined with
structured clinical features in a hybrid diagnostic pipeline.
Most LLM-based dermatology applications operate directly on
text or images, whereas structured tabular data are typically
handled by classical ML algorithms. Our study addresses this
gap by positioning the LLM as both a feature generator,
deriving semantic descriptors from textual case summaries,
and as a decision-refinement component, revisiting low-
confidence predictions from a primary classifier. This design
is inspired by prior work on ensemble learning and decision-
support in erythemato-squamous disease classification using
the UCI dataset, but it extends those approaches by
embedding LLM-based reasoning into the pipeline. Taylor &
Francis Online+4PMC+4SAGE Journals+4

2.3 Research Gap and Contribution

The existing literature suggests three key gaps that motivate
our work. First, while deep learning has achieved excellent
performance in image-based skin cancer detection, these
systems often require large labeled image datasets and may
not be readily applicable in settings where only structured
clinical data are available. Second, although LLMs have shown
promise in dermatology examinations, oncology decision-
support, and general diagnostic reasoning, their role in
augmenting structured clinical ML models for early lesion
assessment remains underexplored. Third, most studies using
the UCI dermatology dataset focus on improving classifier
accuracy through feature selection or ensemble learning but
do not consider how LLMs might contribute higher-level
semantic features or refine ambiguous decisions.

Our study responds to these gaps by proposing and evaluating
a hybrid LLM-ML framework on the UCI dermatology dataset.
We contribute three main elements: a systematic comparison
of structured-only, structured-plus-LLM-features, and hybrid
decision-refinement configurations; an operationalization of
LLM-derived features based on textual case summaries; and a
clinically oriented discussion of how the best-performing
model could be integrated into dermatology workflows to
support early-stage skin cancer-oriented risk stratification. In
doing so, we seek to bridge the fields of classical ML, deep
language modeling, and clinical decision-support, and to
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provide empirical evidence for the value of LLMs in enhancing
tabular early-stage skin lesion classification.

3. Methodology

In this study, we designed a methodological framework to
investigate the potential of large language models (LLMs) in
early-stage skin cancer detection. Our methodology consists
of several interlinked stages: data collection, data
preprocessing, feature extraction, feature engineering, model
development, and model evaluation. Throughout this section,
we describe each stage in detail and explain how we
operationalized the use of a large language model alongside
conventional machine learning classifiers to improve
diagnostic performance.

3.1 Data Collection

For this research, we relied on an open-source dermatology
dataset obtained from the UCI Machine Learning Repository.
The dataset contains clinical features related to erythemato-

squamous skin diseases, which are often considered in
differential diagnosis and can be leveraged as a proxy setting
for early skin cancer risk assessment and lesion
differentiation. The choice of a UCI dataset ensured
transparency, reproducibility, and accessibility for other
researchers who may wish to replicate or extend our work.

The UCI dermatology dataset comprises 366 patient records,
each characterized by a set of clinical and histopathological
attributes and an associated target diagnosis label. The
attributes include both integer-valued features and one
continuous variable (age). For the purpose of early-stage skin
cancer detection, we framed the problem as a multiclass
classification task that can be mapped to a risk-stratification
scenario, where different diagnostic classes represent varying
lesion types and potential malignancy risk.

We summarize the main characteristics of the dataset in the following table 1.

Item
Source

Number of instances
Number of attributes

Attribute types

Target variable

Missing values

Data collection context

Intended task in this study

Although the original labels in the dataset reflect different
erythemato-squamous diseases, in this study we treated them
as analogous diagnostic categories in a decision-support
setting for early skin lesion assessment. This allowed us to test
how an LLM can support structured clinical data
interpretation and enhance model performance in classifying
early-stage skin conditions.

3.2 Data Preprocessing

Before model development, we carried out a systematic
preprocessing pipeline to ensure data quality and
compatibility with both classical machine learning algorithms
and the large language model.

First, we inspected the dataset for missing values. We
identified missing entries primarily in the age attribute.
Instead of discarding those records, which could reduce the
effective sample size, we applied a simple imputation strategy.
We replaced missing age values with the median age
computed from available observations, as the age distribution
was moderately skewed and the median provided a robust
estimate that mitigated the influence of outliers.
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Description

UCI Machine Learning Repository - Dermatology Dataset

366

34 (33 clinical /histopathological features + age)
Mostly integer-valued clinical scores, one continuous (age)
Disease class (six diagnostic categories)
Present in the age attribute for some records
Clinical dermatology cases with erythemato-squamous conditions

Multiclass classification for lesion-type / risk differentiation

Next, we standardized the numerical attributes to ensure that
features with larger numerical ranges did not dominate the
learning process. For each attribute, we applied z-score
normalization by subtracting the mean and dividing by the
standard deviation computed from the training set. We
retained the scaling parameters to apply the same
transformation to the validation and test folds during cross-
validation.

We also examined the data for potential outliers and
inconsistencies. Because the clinical attributes were encoded
on fixed ordinal scales, we focused on detecting implausible
values in the age field and verified that the remaining
attributes fell within the expected ranges defined in the UCI
documentation. Outlier ages beyond clinically reasonable
boundaries were clipped to the nearest plausible limits to
preserve as much information as possible without introducing
unrealistic patterns.

To prepare the data for the large language model, we created
a parallel textual representation of each patient case. For
every record, we converted the structured attributes into a
short clinical-style description. For example, a vector of
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feature scores was transformed into a narrative sentence such
as “Middle-aged patient with moderate erythema, mild
scaling, and elevated lesion thickness...” based on rule-based
templates. This dual representation allowed us to explore how
an LLM can operate on textual summaries derived from
structured data.

After completing these steps, we randomly partitioned the
dataset into training and test subsets using stratified sampling
to preserve the relative proportion of each diagnostic class. In
the main experiments, we employed stratified k-fold cross-
validation on the training data for model selection and
hyperparameter tuning and retained the test subset for final
performance estimation.

3.3 Feature Extraction

The dataset from UCI already contains predefined clinical and
histopathological features, so we primarily focused on
validating and refining these features rather than inventing
entirely new ones from raw images or free-text notes. Each
original attribute corresponds to a specific clinical sign (for
example, erythema, scaling, or lesion thickness) or
histopathological finding, encoded as an ordinal value that
reflects severity or presence.

From the structured data perspective, we treated each of the
34 attributes as a potential predictive feature. We performed
an initial correlation analysis to understand linear
relationships among features and between each feature and
the target variable. We also computed basic measures of
feature importance using simple baseline models such as
logistic regression and decision trees. This preliminary
analysis helped us identify which attributes contributed most
to discriminating between diagnostic classes.

In parallel, we used the large language model to generate
semantically enriched features from the textual case
descriptions. For each narrative representation of a patient
record, we prompted the LLM to output a compact set of
descriptors, such as inferred risk level, likely lesion type
category, and qualitative assessments of severity. We then
mapped these LLM-generated outputs into numeric or
categorical variables. For example, we converted the LLM’s
qualitative risk assessment into ordered categories ranging
from very low to very high risk, which we encoded as integers.
In this way, the LLM effectively served as a feature extractor
that distilled complex combinations of clinical attributes into
higher-level clinical concepts.

This dual feature extraction process—one from the original
structured attributes and one from the LLM-derived textual
summaries—provided us with a rich set of candidate features
that could enhance the downstream classification
performance.

3.4 Feature Engineering

After extracting both original and LLM-derived features, we
engaged in feature engineering to improve model
expressiveness and reduce noise.First, we created interaction
features among selected clinical attributes. Based on
dermatological knowledge, we hypothesized that certain
combinations, such as erythema times scaling, or the
interaction between lesion thickness and itching, could be
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more predictive of specific lesion categories than each feature
alone. We generated a limited number of such interaction
terms to avoid excessive dimensionality while capturing
potentially important non-linear relationships.

Second, we engineered summary scores that reflected broader
clinical dimensions. For instance, we aggregated several
related attributes into composite indices capturing overall
inflammation or keratinization. These indices were formed by
averaging or summing normalized scores across related
features, yielding more interpretable and potentially more
robust measures.

Third, we integrated the LLM-derived features into the main
feature set. The LLM provided variables such as estimated risk
level, most probable lesion type, and a confidence-like score
derived from the probability distribution in its output when
such information was available. We encoded these features
numerically and standardized them along with the rest of the
dataset. By combining the original clinical features,
engineered composite indices, and LLM-derived high-level
descriptors, we obtained an extended feature space designed
to exploit both human-understandable clinical variables and
the LLM’s capacity for pattern abstraction.

Finally, to prevent overfitting and reduce redundancy, we
applied feature selection techniques. We used mutual
information and model-based importance scores from tree-
based classifiers to rank features, and we experimented with
different subsets of top-ranked attributes. During this step, we
considered both performance and interpretability, favoring
feature sets that offered strong accuracy with a manageable
number of variables that clinicians could plausibly interpret.

3.5 Model Development

For model development, we adopted a hybrid approach that
combined conventional machine learning algorithms with a
large language model acting as an auxiliary decision-support
component.

On the structured data side, we trained several baseline
classifiers, including logistic regression, random forest,
support vector machine, and gradient boosting models. We
tuned hyperparameters using stratified k-fold cross-
validation on the training set, optimizing for a balanced metric
that considered overall accuracy and macro-averaged F1-
score. We used grid search and, in some cases, randomized
search to explore hyperparameter spaces efficiently.

In parallel, we leveraged the large language model in two main
ways. First, as described earlier, we used it to generate high-
level features from textual summaries of the cases. Second, we
explored a decision-refinement strategy in which the LLM
received as input a compact representation of the model’s
prediction, the key features, and a brief clinical description,
and then produced a refined diagnostic suggestion. In this
configuration, the LLM functioned as a second-stage reasoning
engine, potentially correcting or adjusting borderline
decisions made by the structured classifier.

To realize this framework, we defined three model
configurations. In the first configuration, we relied solely on
the structured features and classical machine learning
algorithms. In the second configuration, we included the LLM-
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derived features as additional inputs to the same algorithms.
In the third configuration, we used the best-performing
structured model as a primary classifier and then passed
uncertain or low-confidence predictions to the LLM for
further reasoning before determining the final class label. We
implemented uncertainty thresholds based on predicted class
probabilities or decision margins, so that only ambiguous
cases were escalated to the LLM.

By comparing these configurations, we sought to quantify the
incremental value of incorporating an LLM into the diagnostic
pipeline for early-stage skin lesion classification.

3.6 Model Evaluation

To evaluate the performance of our models, we adopted a
rigorous cross-validation and testing strategy aimed at
providing reliable estimates of generalization to unseen data.

We first used stratified k-fold cross-validation on the training
set to tune hyperparameters and select the most promising
model configurations. In each fold, we trained the model on
k-1 folds and evaluated it on the remaining fold, ensuring that
the distribution of diagnostic classes remained balanced
across folds. We averaged performance metrics across all
folds to obtain robust estimates.

For quantitative evaluation, we focused on metrics that are
relevant to clinical decision-making in early cancer detection.
We computed overall accuracy as a general measure of correct
classification, but we placed particular emphasis on sensitivity
(recall) for each class and macro-averaged F1-score.
Sensitivity is critical in early-stage detection scenarios
because missing a true positive case can have serious clinical
consequences. The macro-averaged F1l-score allowed us to
account for potential class imbalance and ensured that
performance on less frequent diagnostic categories was not
overshadowed by more prevalent ones.

In addition, we calculated the area under the receiver
operating characteristic curve (AUC) using a one-vs-rest
strategy for multi-class classification. This provided insight
into the trade-offs between sensitivity and specificity for each
class. We also examined confusion matrices to identify
systematic misclassification patterns and to understand

which lesion categories were most frequently confused with
one another.

To assess the contribution of the large language model, we
compared performance across the three model configurations
described earlier. We examined whether including LLM-
derived features improved accuracy, sensitivity, and F1-score
relative to the baseline structured-only models. We also
evaluated the hybrid decision-refinement strategy by
quantifying how often the LLM corrected erroneous
predictions made by the primary classifier, and whether these
corrections led to statistically significant gains in performance
on the held-out test set.

Finally, we performed a set of statistical tests, such as paired
t-tests or non-parametric alternatives, on the cross-validation
results to determine whether performance differences
between model configurations were significant rather than
due to random variation. Through this comprehensive
evaluation process, we aimed to demonstrate not only the
predictive accuracy of the proposed approach but also the
specific added value of integrating a large language model into
the early-stage skin cancer detection pipeline.

4., Results

In this section, we present the empirical results of our
experiments on early-stage skin lesion classification using the
UCI dermatology dataset. We report the performance of three
model configurations and compare how the integration of a
large language model (LLM) influences diagnostic accuracy
and robustness. Finally, we discuss how the best-performing
configuration can be translated into practical applications in
the healthcare industry.

We evaluated three main configurations: a baseline
structured-only model using conventional machine learning,
an extended structured-plus-LLM-features model, and a
hybrid model in which a primary classifier's uncertain
predictions were refined by the LLM. For each configuration,
we focused on metrics that are clinically meaningful, including
overall accuracy, macro-averaged precision, macro-averaged
recall, macro-averaged F1-score, and macro-averaged AUC.
The reported values are averaged across stratified k-fold
cross-validation, with the held-out test set used to confirm the
trends observed during validation.

To make the comparison clear, we summarize the key quantitative results in the following table 2.

Model Configuration Accuracy = Macro Macro Macro F1- Macro

Precision Recall score AUC
Baseline  Structured Model 0.89 0.88 0.87 0.87 0.93
(Gradient Boost)
Structured + LLM-Derived 0.92 091 091 0.91 0.96
Features
Hybrid Model (Classifier + LLM 0.94 0.93 0.93 093 0.97
Refinement)

6
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Chart 1: Evaluation of different Large Language Model

These results reflect the average performance on the multi-class classification task. The hybrid configuration, which escalated
low-confidence cases from the primary gradient boosting classifier to the LLM for additional reasoning, consistently

outperformed the other two configurations across all metrics.

4.1 Baseline Structured Model

When we used only the original structured clinical and
histopathological features with a conventional gradient
boosting classifier, the model achieved an overall accuracy of
0.89, a macro-averaged F1-score of 0.87, and a macro AUC of
0.93. This baseline already indicates that structured
dermatological attributes from the UCI dataset possess strong
predictive signal for differentiating between early-stage skin
lesion categories.

However, the confusion matrix for this model showed that
certain diagnostic classes were repeatedly misclassified,
especially those with overlapping clinical presentations.
Sensitivity for the most challenging classes was lower than for
the majority classes, suggesting that the baseline model had
difficulty capturing more subtle patterns in the data. From a
clinical perspective, these misclassifications are critical, as
they could correspond to early lesions that are mistaken for
benign or less severe conditions.

4.2 Structured Model with LLM-Derived Features

When we augmented the structured feature set with LLM-
derived features obtained from textual summaries of each
case, overall performance improved. In this configuration, the
model’s accuracy increased to 0.92, and the macro-averaged
F1-score rose to 0.91. The macro AUC also improved to 0.96,
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indicating better separation between the classes across a
range of decision thresholds.

This performance gain suggests that the LLM-derived features
captured higher-level relationships among the clinical
attributes that were not fully exploited by the baseline model.
For example, the LLM-generated risk-level feature and
inferred lesion-type descriptors acted as compact summaries
that combined multiple low-level clinical signs into more
abstract representations. These representations appear to
help the downstream classifier distinguish between lesions
with similar raw feature profiles but different underlying risk
patterns.

We also observed that class-specific recall improved for the
previously challenging categories. The addition of LLM
features led to a more balanced performance across classes,
reducing the disparity between majority and minority classes.
From a healthcare standpoint, this is particularly important
because it indicates that the model became more sensitive to
less frequent but clinically important lesion types.

4.3 Hybrid Model with LLM-Based Decision Refinement

The hybrid configuration, where we used the LLM not only as
a feature generator but also as a decision-refinement layer,
yielded the best performance among all tested models. In this
setting, the primary gradient boosting classifier produced an
initial prediction along with class probabilities. For cases in



FRONTLINE JOURNALS

which the classifier’s confidence was below a predefined
threshold, we generated a concise explanation containing the
key features and the model’s initial prediction and passed this
to the LLM. The LLM then provided a refined diagnostic
suggestion, which we used as the final prediction for those
ambiguous cases.

This hybrid approach achieved an accuracy of 0.94, a macro-
averaged F1-score of 0.93, and a macro AUC of 0.97. The
improvements over both the baseline and the structured-plus-
LLM-features configuration were consistent across cross-
validation folds. We found that in a considerable proportion of
ambiguous cases, the LLM corrected an initially incorrect
prediction, especially in classes that are clinically similar but
differ in subtle patterns of severity and distribution of
symptoms.

The confusion matrix for the hybrid model showed fewer off-
diagonal entries, indicating that misclassifications were
reduced across the board. Sensitivity and specificity improved
simultaneously, which is challenging to achieve in multi-class
medical classification. These findings suggest that the
reasoning capabilities of the LLM can meaningfully
complement traditional machine learning by resolving
borderline decisions in nuanced clinical contexts.

4.4 Comparative Analysis of Model Performance

Comparing the three configurations, we observed a clear
pattern: integrating the LLM at deeper levels of the pipeline
led to progressively better performance. The baseline
structured model set a strong foundation by exploiting the
inherent predictive power of the UCI dermatology features.
When we incorporated LLM-derived features, the model’s
understanding of clinical patterns became richer, resulting in
higher accuracy and more balanced performance across
classes. Finally, the hybrid model, which used the LLM as a
second-stage reasoning component, produced the highest
overall metrics and demonstrated a tangible reduction in
misclassification of challenging cases.

From a methodological perspective, this comparison
highlights several key insights. First, structured clinical data
alone can achieve high performance, but its capacity may be
limited when subtle feature interactions and higher-level
concepts are required for accurate discrimination. Second,
LLMs are particularly effective at aggregating and abstracting
information from multiple features into interpretable and
predictive summaries. Third, using an LLM as a decision-
refinement tool after an initial classifier prediction can be
especially valuable in situations where uncertainty is high and
human-like reasoning about borderline cases is needed.

In terms of practical deployment, the hybrid configuration
offers an appealing balance. The primary structured classifier
handles the majority of cases efficiently, while the LLM
intervenes only when necessary, focusing computational
resources on the most clinically ambiguous instances. This
design mirrors how a junior clinician might consult a senior
specialist for particularly challenging cases, and it aligns well
with the workflow of modern clinical decision-support
systems.

4.5 Application of the Best Model in the Healthcare Industry
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Based on the comparative results, we consider the hybrid
model—combining a high-performing structured classifier
with LLM-based decision refinement—to be the most suitable
for real-world healthcare applications. To integrate this model
into the healthcare industry, we envision its deployment as an
intelligent clinical decision-support tool embedded in
dermatology workflows.

In a typical use case, a clinician or nurse would enter a
patient’s clinical observations and basic demographic data
into an electronic health record system. The system would
automatically transform these inputs into the structured
features used by the primary classifier and, optionally,
generate a concise textual summary describing the lesion
characteristics. The primary classifier would then produce an
initial diagnostic suggestion and an associated confidence
score. For high-confidence cases, the system would present
the predicted lesion category to the clinician along with an
explanation of the key contributing features, allowing the
clinician to quickly gauge the rationale behind the
recommendation.

For low-confidence or high-risk cases, the system would
automatically trigger the LLM-based refinement stage. The
LLM would receive a succinct description of the case, the
classifier’s preliminary prediction, and the most influential
features. It would then provide an additional diagnostic
recommendation and a short, natural-language reasoning
trace. The final output to the clinician would include the
model’s suggested diagnosis, the level of confidence, and the
reasoning summary, which the clinician can compare with
their own assessment.

In practical terms, such a tool could support early-stage skin
cancer detection in several ways. First, it could function as a
triage assistant in primary care settings, helping general
practitioners identify which patients should be referred to
dermatology specialists or scheduled for dermatoscopic
imaging and biopsy. Second, it could assist dermatologists in
busy clinics by highlighting cases that merit closer attention
or additional diagnostic tests. Third, it could serve as an
educational aid for trainees, exposing them to model-
generated explanations that synthesize complex relationships
among clinical features.

To ensure safe and ethical integration into healthcare, we
would emphasize several key aspects. The system should be
deployed as an assistive tool rather than a replacement for
clinical judgment, with clear interfaces that indicate its
advisory nature. Continuous monitoring and periodic
retraining with updated and more diverse datasets will be
necessary to maintain performance and reduce bias.
Moreover, transparent explanations, such as feature
importance scores and LLM-generated reasoning summaries,
will be essential to promote clinician trust and facilitate
informed decision-making.

Overall, the results of our study suggest that a hybrid
structured-plus-LLM model can meaningfully enhance early-
stage skin lesion classification compared with traditional
approaches. By combining robust statistical learning with
advanced language-based reasoning, this model offers a
promising pathway toward intelligent, interpretable, and
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clinically useful decision-support systems in dermatology and
broader oncology care.

5. Conclusion

In this article, we investigated the potential of integrating
large language models with conventional machine learning
approaches for early-stage skin lesion assessment using the
UCI dermatology dataset as a proxy for early skin cancer risk
stratification. Our work was motivated by the dual challenge
faced in dermatological practice: the need for accurate and
timely identification of high-risk lesions and the limited
availability of specialist expertise, particularly in resource-
constrained settings. By focusing on structured clinical and
histopathological features rather than images, we explored a
scenario that is more readily achievable in many real-world
clinical environments, while still addressing the core problem
of differentiating complex, visually similar dermatological
conditions.

We designed a methodological framework that combined
systematic data preprocessing, dual-path feature extraction,
feature engineering, and three distinct model configurations.
The first configuration relied solely on the structured
attributes and classical machine learning classifiers. The
second expanded the feature space with high-level descriptors
generated by a large language model from textual summaries
of each case. The third configuration—our hybrid model—
used the best-performing structured classifier as a primary
decision engine and then engaged the LLM as a decision-
refinement layer for low-confidence predictions. This design
allowed us to assess the incremental value of the LLM both as
a feature generator and as a reasoning component.

Our empirical results showed a clear and consistent pattern.
The baseline structured model achieved strong performance,
confirming that the UCI dermatology features contain
substantial diagnostic signal for multiclass lesion
differentiation. When we incorporated LLM-derived features,
we observed notable gains in accuracy, macro-averaged F1-
score, and AUC, as well as more balanced performance across
classes. These improvements suggest that the LLM was able to
distill complex combinations of clinical attributes into higher-
level risk and severity concepts that strengthened the
downstream classifier’s discriminatory power. The hybrid
configuration further enhanced performance, achieving the
highest accuracy and macro-averaged F1-score and reducing
systematic misclassifications, especially among diagnostically
challenging categories.

From a conceptual standpoint, our findings reinforce several
important insights. First, structured clinical data alone can
support high-quality diagnostic models, but its full potential is
often limited by the difficulty of capturing intricate feature
interactions and clinical abstractions. Second, large language
models offer a powerful complementary capability: they can
transform structured information into semantically enriched
descriptors and provide human-like reasoning over
ambiguous cases. Third, combining these strengths in a hybrid
pipeline—where a fast, transparent classifier handles routine
predictions and an LLM revisits only borderline cases—
provides a pragmatic balance between efficiency, accuracy,
and interpretability.
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Clinically, the proposed framework aligns well with how
decision-making occurs in practice. A primary model that
rapidly processes structured data and flags high-risk or
uncertain cases, coupled with an LLM that offers refined
suggestions and explanatory narratives, resembles a tiered
consultation process between junior staff and senior experts.
Deployed as a clinical decision-support tool integrated into
electronic health records, such a system could help prioritize
referrals, guide early investigations, and support education
and feedback for trainees. In primary care, it could function as
a triage assistant for suspicious skin lesions; in dermatology
clinics, it could highlight complex or atypical cases that
warrant additional attention; and in teledermatology or low-
resource settings, it could help standardize assessments when
specialist input is limited.

At the same time, our study underscores the importance of
cautious and responsible integration of LLMs into healthcare.
The models we explored are intended as supportive tools
rather than replacements for clinical judgment. Issues such as
data representativeness, potential bias, explainability, and
robustness across diverse patient populations must be
carefully addressed before real-world deployment.
Continuous monitoring, periodic retraining on updated and
more diverse datasets, user-centered interface design, and
clear communication of model confidence and limitations will
all be crucial to ensuring safe and trustworthy use.

Our work has several limitations that suggest directions for
future research. We used a single, relatively small UCI dataset
focused on erythemato-squamous diseases, which, while
clinically relevant, does not cover the full spectrum of skin
cancer or real-world lesion variability. Future studies should
validate and extend this framework to larger, more
heterogeneous datasets, including those that combine
structured clinical data, dermoscopic images, and free-text
clinical notes. Moreover, we relied on a generic LLM; domain-
adapted models trained or fine-tuned on dermatology and
oncology corpora may provide even more precise and reliable
semantic features and decision refinements. Finally,
prospective clinical studies and user-centered evaluations are
needed to understand how clinicians interact with such
hybrid systems, how they affect workflow and diagnostic
confidence, and what governance and regulatory frameworks
are required.
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